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INFLUENCE OF ORBITAL-MANEUVERING-SYSTEM FAIRINGS

AND RUDDER FLARE ON THE TRANSONIC AERODYNAMIC

CHARACTERISTICS OF A SPACE SHUTTLE ORBITER

By James C. Ellison

Langley Research Center

SUMMARY

Transonic wind-tunnel tests have been conducted to determine the static longitudinal

and lateral-directional aerodynamic characteristics of a space shuttle orbiter. Data were

obtained at angles of attack from about -10 to 240, at angles of sideslip of 00 and 50, and

at a Reynolds number, based on model length, of approximately 4.0 x 106. Mach numbers

ranged from 0.4 to 1.2 with primary runs at Mach numbers of 0.8 and 1.2. The effects of

orbital-maneuvering-system fairings, elevon deflection, and rudder flare on the aerody-

namic characteristics were investigated.

The model with the orbital-maneuvering-system fairings had a maximum untrimmed

lift-drag ratio from 7.4 to 3.4 at Mach numbers from 0.4 to 1.2 and a maximum trimmed

lift-drag ratio of about 3.55 at Mach 0.8 with the rudder flared 300 .

Addition of the orbital-maneuvering-system fairings increased the directional sta-

bility of the model at Mach 0.8 and 1.2. Increasing the rudder flare also increased the

directional stability at Mach 1.2. The directional stability parameter Cnp,dyn was posi-

tive throughout the test angle-of-attack range at Mach 0.8 and 1.2. However, at Mach 0.8

the value was markedly reduced at high angles of attack, where there was a region of neg-

ative effective dihedral.

INTRODUCTION

NASA and the aerospace industry are currently developing the space shuttle system

for transporting large payloads to and from near-Earth orbit and for insertion of payloads

for missions beyond Earth orbit. Early studies of this system focused on a fully reusable,

two-stage system in which the orbiter vehicle is vertically launched and is capable of

aircraft-type horizontal landing following reentry. This paper presents the results of an

investigation of the transonic aerodynamic characteristics of the orbiter concept reported

in reference 1 (which is a modification of the concept reported in ref. 2), designed for use

in a fully reusable, two-stage shuttle system.



The investigation examined the effects of Mach number, component buildup (orbital-

maneuver-system fairings and vertical tail), and flared rudder on the static longitudinal

and lateral-directional aerodynamic characteristics. Also, effects of elevon deflection on

longitudinal stability and of rudder flare on directional stability were investigated. Data

were obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.4

to 1.2, at angles of attack from -1 to 240, at sideslip angles of 00 and 50, and at a Reynolds

number, based on model length, of 4.0 x 106.

SYMBOLS

The static longitudinal aerodynamic characteristics are presented in the stability-

axis system, and the lateral-directional aerodynamic characteristics are presented in the

body-axis system. The moment reference point corresponds to a center of gravity located

at 67 percent of the body length and 41.4 percent of the maximum body height.

b reference span, 22.936 cm

CD drag coefficient, Drag
qS

CD,b base-drag coefficient, Base dragqS

CL lift coefficient, Lift
qS

C l  rolling-moment coefficient, Rolling moment
qSb

AC1
Cl lateral-stability parameter, -A-, at = 00 and = 50

Cm pitching-moment coefficient, Pitching moment
qSe

Cn yawing-moment coefficient, Yawing moment
qSb

ACn
Cnp directional-stability parameter, - , at 0 = 00 and 1 = 50

C3 Idyn Z
Cnp,dyn = Cn cos a - - Clp sin
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Cy side-force coefficient, Side force
qS

ACy
Cy side-force parameter, AY, at 3= 00 and / = 50

c mean aerodynamic chord, 13.142 cm

IX  moment of inertia about longitudinal body axis

I Z  moment of inertia about vertical body axis

L/D lift-drag ratio

M Mach number

q dynamic pressure, Pa

S reference area, 252.325 cm 2

a angle of attack, deg

atrim angle of attack for Cm = 0, deg

P angle of sideslip, deg

5e  elevon deflection angle, positive with trailing edge down, deg

6flare rudder flare angle, deg (see fig. 2)

Configuration designations and abbreviations:

BL buttock line, cm

B5 basic body

B9 basic body with OMS

FS fuselage station, cm
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OMS orbital maneuvering system

V vertical tail

W wing

WL water line, cm

DESCRIPTION OF MODEL

A three-view sketch and cross-sectional views of the basic 0.00683-scale model are

presented in figure 1. Trhe win , hirvincr nn Iscn ct ratin nf 9.08 hnQreC nn the winr thfnreft-

ical planform area, had an NACA 0010-64 airfoil at the wing-body juncture and an NACA

0012-64 airfoil at 81.7 percent of the semispan. The elevons had provisions for deflection

angles of 00, -150, and -300. Details of the vertical tail and rudder are presented in fig-

ure 2. Interchangeable rudders with flare angles of 00 , 150, and 300 could be mounted on

the vertical tail. Details and location of the OMS fairings are shown in figure 3.

TESTS AND PROCEDURES

The tests were conducted in the Langley 8-foot transonic pressure tunnel (ref. 3) at

Mach numbers from 0.4 to 1.2 and at a Reynolds number, based on model length, of approx-

imately 4.0 x 106. Transition was fixed by placing 0.159-cm-wide strips of No. 120 car-

borundum grit at locations 3.81 cm from the nose and 1.27 cm from the leading edges of

the wing and vertical tail. Forces and moments were measured with a sting-supported,

six-component, strain-gage balance. Base pressure measurements were obtained at two

locations. The angle of attack was varied from -1o to 240 at angles of sideslip of 00 and

50

Angles of attack and sideslip have been corrected for the effects of sting and balance

deflections due to aerodynamic loads and for tunnel flow angularity. The drag coefficients

represent gross drag in that no correction was made for base drag or grit drag (assumed

negligible). However, base-drag coefficients, calculated from the average of the measured

base pressures, are presented.

RESULTS AND DISCUSSION

Flight Attitudes and Control Settings

In the transonic speed regime the orbiter trim angle of attack was assumed to be

100, as shown by the nominal entry angle-of-attack schedule in figure 4.
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The flared rudder was designed to provide increased directional stability at high

Mach numbers. In the upper speed range of this investigation (M = 0.8 to 1.2),

6flar e = 300; in the subsonic regime, 6 flare = 00 to reduce base drag.

Longitudinal Aerodynamic Characteristics

Effect of Mach number.- The effect of Mach number on the longitudinal aerodynamic

characteristics for the complete configuration (vertical tail and OMS fairings mounted) is

shown in figure 5. For a < 120 there were only small changes in lift-curve slope with

increasing Mach number. However, above a = 120 the lift-curve slopes varied to such

an extent that for a = 240 the values of CL ranged from about 0.9 to 1.2. The maxi-

mum values of L/D varied from about 3.4 at M = 1.2 to 7.4 at M = 0.4. The config-

uration was stable at a < 160, but at some angle of attack above 160 (depending on Mach

number), the configuration became longitudinally unstable.

Effect of vertical tail and OMS fairings.- Data obtained at M = 0.8 and 1.2 are pre-

sented in figures 6 and 7, respectively, for the basic configuration with the vertical tail

removed (B5W), the basic configuration (B5WV), and the basic configuration with the OMS

fairings (B9WV). The addition of the vertical tail had little effect on the longitudinal char-

acteristics except for a small decrease in the maximum of L/D at M = 0.8 and 1.2 and

a positive pitching-moment increment at M = 1.2. Addition of the OMS fairing produced

a positive increment in Cm of about 0.004 at M = 0.8 and 0.012 at M = 1.2 and a

reduction in the maximum untrimmed L/D of about 1.0 at M = 0.8.

Effect of rudder flare.- The effects of rudder flare angle at M = 1.2 for the basic

configuration are shown in figure 8. Increasing the rudder flare angle from 00 to 600 pro-

duced a nearly constant increment in CL, CD, and Cm over the angle-of-attack range,

decreasing CL while increasing CD and Cm. The data indicate a substantial loss in

L/D. In fact, at a = 100, L/D is reduced from 3.5 to 2.9, and the maximum untrimmed

L/D is reduced from 3.7 to 2.9 by flaring the rudder 600. Longitudinal stability was

essentially unaffected by rudder flare.

Effect of elevon deflection.- Through the Mach number range 0.8 to 1.2, the schedule

for rudder flare called for 6 flare = 300; therefore, the effect of elevon deflection was

obtained on configurations with a rudder flare angle of 30 G . The data for the B9WV con-

figuration with 6 e = 00, -150, and -300 at M = 0.8 are presented in figure 9, and the

data for the B5WV configuration with 6 e = 00 and -300 at M = 1.2 are presented in

figure 10. Data for the B5WV configuration (M = 1.2) indicate that at 6 e = -300, trim

occurs at about a = 9.50, slightly below the scheduled angle of attack (a = 100). However,

the results presented in figure 9 indicate that with the OMS fairings, the configuration

would trim at a = 100 with slightly less negative elevon deflection.
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The trim characteristics of the B9WV configuration at M = 0.8 are summarized
in figure 11. The configuration was trimmable over the angle-of-attack range. At
a = 100 the configuration required 6 e = -9.2o for trim and had a trimmed L/D of 3.4,
which was only about 0.15 less than the maximum trimmed L/D.

Lateral- Directional Aerodynamic Characteristics

The lateral-directional parameters Cl, Cnp, and Cyf (figs. 12 and 13) were

calculated from the increments in Cl , Cn, and Cy, respectively, at 0 = 00 and 50 .

Therefore, they do not account for any nonlinearities which may exist in the intermediate
sideslip range.

Effect of vertical tail and OMS fairings.- The lateral-directional parameters Cl'
Cn , and CyP are shown in figure 12 for the B5W, B5WV, and B9WV configurations at

M = 0.8 and 1.2. At M = 0.8 (fig. 12(a)) the model without the vertical tail was direc-
tionally unstable and had large positive values of Cl (negative dihedral effect) above

a = 50. Addition of the vertical tail and the OMS fairings provided a positive increment
in Cno, and the model was directionally stable over the test angle-of-attack range. The
vertical tail and OMS also increased the effective dihedral of the model (negative incre-
ment in Ci ) . However, between a = 100 and 20 , the values of ClP were positive.
The angle of attack at which the loss in effective dihedral occurs appears to be a function
of Mach number, since data from reference 2 for a comparable model indicated positive
effective dihedral up to angles of attack of about 190. The vertical tail and OMS provided
positive effective dihedral (-Cl.) throughout the test angle-of-attack range at M = 1.2
also (fig. 12(b)) but were less effective in providing directional stability than at M = 0.8.
With the vertical tail the model was directionally stable at a < 9.60, and with the OMS
the model was stable up to a = 190.

Effect of rudder flare.- The lateral-directional characteristics of the B5WV configu-
ration with 6 flare = 0', 300, and 600 at M = 1.2 are shown in figure 13. The effect of
rudder flare was to extend the directional stability from a = 100 to about a = 19.60
with 300 of flare and to the highest test angle of attack with 600 of flare. The effective
dihedral increased by about 0.001 for a < 200 when the rudder flare angle was increased
from 00 to 600.

Directional- stability criterion.- The dynamic directional- stability parameter
Cno,dyn (see ref. 4), which represents a criterion for directional stability, was computed

by using data for zero elevon deflection from figure 12 and is presented in figure 14.
Although it is recognized that deflection of the elevons for trim will affect the lateral-
directional characteristics (see ref. 2), the longitudinal trim data at sideslip were not
available, and therefore, the data are presented for the untrimmed case. Positive values
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of the parameter Cndyn are shown to exist throughout the angle-of-attack range for

both M = 0.8 and 1.2. In general, this indicates that the possibility of directional diver-

gence at the nominal angle of attack is small. At M = 0.8, however, Cna dyn decreases

markedly and reaches a minimum value at angles of attack from 160 to 180. This reduc-

tion in Cno,dyn is caused by the positive values of Clf (negative effective dihedral)

shown in figure 12(a). In reference 4, it is pointed out that positive values of Cno,dyn

combined with negative effective dihedral can result in yaw divergence if the yaw due to

aileron deflection is favorable (if Cn/Cj is positive for aileron deflection). In refer-

ence 5 this ratio is positive at M = 0.8 for angles of attack up to 170.

SUMMARY OF RESULTS

Transonic wind-tunnel tests have been conducted to determine the static longitudinal

and lateral-directional aerodynamic characteristics of a space shuttle orbiter and the

effects of an orbital maneuvering system, elevon deflection, and rudder flare on these

characteristics. The results of the investigation are summarized as follows:

1. The model with the orbital-maneuvering-system fairings had a maximum

untrimmed lift-drag ratio from 7.4 to 3.4 at Mach numbers from 0.4 to 1.2 and a maxi-

mum trimmed lift-drag ratio of about 3.55 at Mach 0.8 with the rudder flared 300

2. Addition of the orbital-maneuvering-system fairings increased the directional

stability of the model at Mach 0.8 and 1.2 and increased the angle-of-attack range for

directional stability at Mach 1.2. Increasing the rudder flare also produced sizable

increases in directional stability at Mach 1.2.

3. The dynamic directional-stability parameter Cno,dyn was positive throughout

the test angle-of-attack range at Mach 0.8 and 1.2. However, at Mach 0.8 the value was

markedly reduced at high angles of attack, where there was a region of negative effective

dihedral.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., December 17, 1974.
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Figure 8.- Continued.
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Figure 9.- Effect of elevon deflection on longitudinal aerodynamic characteristics
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Figure 13.- Effect of rudder flare on lateral-directional stability characteristics
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